16092 measured reflections

 $R_{\rm int} = 0.040$

2808 independent reflections

1961 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 2-(3,5-dinitrobenzamido)benzoate

Sohail Saeed,^a* Naghmana Rashid,^a Rizwan Hussain^b and Wing-Tak Wong^c

^aDepartment of Chemistry, Research Complex, Allama Iqbal Open Unicversity, Islamabad 44000, Pakistan, ^bNational Engineering & Scientific Commission, PO Box 2801, Islamabad, Pakistan, and ^cDepartment of Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR, People's Republic of China Correspondence e-mail: Sohail262001@yahoo.com

Received 28 November 2011; accepted 9 December 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.049; wR factor = 0.174; data-to-parameter ratio = 11.8.

The title molecule, $C_{16}H_{13}N_3O_7$, is slightly twisted, with the dihedral angle between the two benzene ring planes being 17.4 (1)°. An intramolecular N-H···O hydrogen bond is observed. In the crystal, weak $C-H \cdots O$ hydrogen bonds link the molecules into chains along the b axis.

Related literature

For background to the biological activity of N-substituted benzamides and their use in synthesis, see: Saeed et al. (2011a,b). For the structures of related chlorophenylbenzamides, see: Gowda et al. (2007a,b,c). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For ortho-hydrogen steric hindrance, see: Karle & Brockway (1944).

Experimental

Crystal data

C16H13N3O7 $M_r = 359.29$ Monoclinic, $P2_1/c$ a = 12.4662 (4) Å b = 17.7213 (5) Å c = 7.4352 (2) Å $\beta = 96.658 \ (2)^{\circ}$

V = 1631.49 (8) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.12 \text{ mm}^{-1}$ T = 296 K $0.52\,\times\,0.30\,\times\,0.26$ mm Data collection

```
Bruker APEXII CCD
  diffractometer
Absorption correction: multi-scan
```

```
(SADABS; Sheldrick, 2004)
T_{\min} = 0.942, T_{\max} = 0.970
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	237 parameters
$wR(F^2) = 0.174$	H-atom parameters constrained
S = 1.11	$\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$
2808 reflections	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1···O2	0.86	1.92	2.641 (3)	140
$C16-H16A\cdots O3^{i}$	0.96	2.55	3.402 (4)	148

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Dr. Wesley T. K. Chan, Professor Z. Y. Zhou, and the Hong Kong Polytechnic University are sincerely thanked for helping to collect the X-ray data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FK2047).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 341, 555-1573.
- Bruker (2007). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA
- Gowda, B. T., Sowmya, B. P., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007a). Acta Cryst. E63, o2906.
- Gowda, B. T., Sowmya, B. P., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007b). Acta Cryst. E63, 03326.
- Gowda, B. T., Sowmya, B. P., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007c). Acta Crvst. E63. 03365.
- Karle, I. L. & Brockway, L. O. (1944). J. Am. Chem. Soc. 66, 1974-1979.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Saeed, S., Jasinski, J. P. & Butcher, R. J. (2011a). Acta Cryst. E67, 0279.
- Saeed, S., Rashid, N., Ng, S. W. & Tiekink, E. R. T. (2011b). Acta Cryst. E67, 01194
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2012). E68, o129 [doi:10.1107/S1600536811053074]

Ethyl 2-(3,5-dinitrobenzamido)benzoate

S. Saeed, N. Rashid, R. Hussain and W.-T. Wong

Comment

In spite of the fact that the molecule is an extensively conjugated aromatic system, the molecule is not co-planar. This may be due to the steric hindrance between the *ortho*-H … amide H-atoms. The twisting away from coplanarity may help to relief this steric hindrance and results in an H14…H1 distance of 2.016 Å. This is in analogy to Karle and Brockway's suggestion that the steric hindrance between the *ortho* hydrogen atoms in biphenyl may be the reason for the non-coplanarity of the structure (Karle and Brockway, 1944). The dihedral angle between the two phenyl ring planes is about 17.4 (1)°. Both nitro groups are slightly twisted, 4.9 (2)° and 4.0 (2)° respectively, from the phenyl ring plane, C9—C11.

There is an intra-molecular N1—H1···O2 interaction. A weak intermolecular C16—H16A···O3(1 - x,1/2 + y,3/2 - z) hydrogen bond may help to align the molecules to endless chains along the *b*-axis in the crystal lattice. In addition, the conjugated ring planes of the title molecules are stacked along the *c*-axis with perpendicular distance between ring planes being 3.38 (1) Å.

Experimental

To a 250 ml round flask fitted with a condenser ethyl *ortho*-amino benzoate (0.1 mol), dichloromethane (15 ml) and triethylamine (0.5 ml) was added under stirring. 3,5-dinitroenzoyl chloride (0.1 mol) was added gradually. The reaction mixture was stirred at room temperature for 1 h and then refluxed for 2 h. The product precipitated as a colourless powder, which was washed three times with water and dichloromethane. Recrystallization from ethyl acetate produced the crystals of the title compound.

Refinement

The structure was solved by direct methods (*SHELXS97*, Sheldrick, 2008) and expanded using Fourier techniques. All non-H atoms were refined anisotropically.

All H atoms are observable from difference Fourier map but were refined riding at idealized geometrical positions with C—H = 0.93, 0.96 and 0.97Å for phenyl, methyl and methylene H-atoms and N—H = 0.86 Å and $U_{iso}(H) = 1.2U_{eq}(C / N)$ and $U_{iso}(H) = 1.5U_{eq}(C$ -methyl).

Figures

Fig. 1. Molecular structure of the title compound with displacement ellipsoids at the 50% probability level.

Fig. 2. The packing diagram of the compound projected along the *c*-axis.

Ethyl 2-(3,5-dinitrobenzamido)benzoate

Crystal data	
C ₁₆ H ₁₃ N ₃ O ₇	F(000) = 744
$M_r = 359.29$	$D_{\rm x} = 1.463 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 16092 reflections
a = 12.4662 (4) Å	$\theta = 2.8 - 25.0^{\circ}$
<i>b</i> = 17.7213 (5) Å	$\mu = 0.12 \text{ mm}^{-1}$
c = 7.4352 (2) Å	<i>T</i> = 296 K
$\beta = 96.658 \ (2)^{\circ}$	Block, colourless
V = 1631.49 (8) Å ³	$0.52\times0.30\times0.26~mm$
Z = 4	

Data collection

Bruker APEXII CCD diffractometer	2808 independent reflections
Radiation source: fine-focus sealed tube	1961 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.040$
ω and ϕ scan	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.8^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2004)	$h = -14 \rightarrow 14$
$T_{\min} = 0.942, \ T_{\max} = 0.970$	$k = -21 \rightarrow 21$
16092 measured reflections	$l = -8 \rightarrow 8$

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.049$
$wR(F^2) = 0.174$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0679P)^2 + 0.9448P]$ where $P = (F_o^2 + 2F_c^2)/3$

<i>S</i> = 1.11	$(\Delta/\sigma)_{\rm max} < 0.001$
2808 reflections	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
237 parameters	$\Delta \rho_{min} = -0.22 \text{ e} \text{ Å}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008) Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure invariant direct	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.013 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	z	$U_{\rm iso}*/U_{\rm eq}$
01	0.66429 (15)	0.10807 (11)	0.9056 (3)	0.0724 (6)
O2	0.49758 (15)	0.11624 (11)	0.7638 (3)	0.0678 (6)
03	0.29471 (18)	-0.10623 (12)	0.5275 (3)	0.0855 (7)
O4	-0.03437 (19)	-0.05325 (16)	0.1499 (3)	0.0870 (7)
05	-0.11189 (19)	0.05489 (17)	0.1563 (4)	0.1005 (9)
O6	0.0466 (2)	0.24889 (16)	0.5560 (5)	0.1221 (11)
07	0.19530 (19)	0.22737 (13)	0.7234 (4)	0.0908 (8)
N1	0.40070 (16)	-0.01091 (13)	0.6539 (3)	0.0560 (6)
H1	0.4020	0.0374	0.6654	0.067*
N2	-0.0365 (2)	0.01221 (19)	0.2005 (3)	0.0721 (7)
N3	0.1241 (2)	0.20962 (15)	0.6060 (4)	0.0752 (7)
C1	0.5738 (2)	0.07809 (15)	0.8276 (3)	0.0540 (6)
C2	0.57853 (19)	-0.00579 (14)	0.8223 (3)	0.0496 (6)
C3	0.6705 (2)	-0.04275 (16)	0.9032 (4)	0.0585 (7)
Н3	0.7267	-0.0147	0.9634	0.070*
C4	0.6794 (2)	-0.12038 (17)	0.8952 (4)	0.0691 (8)
H4	0.7408	-0.1446	0.9502	0.083*
C5	0.5968 (3)	-0.16112 (17)	0.8055 (5)	0.0763 (9)
Н5	0.6032	-0.2133	0.7988	0.092*
C6	0.5043 (2)	-0.12685 (16)	0.7246 (4)	0.0676 (8)
Н6	0.4491	-0.1559	0.6648	0.081*
C7	0.4936 (2)	-0.04870 (15)	0.7326 (3)	0.0524 (6)
C8	0.3099 (2)	-0.03932 (16)	0.5632 (4)	0.0582 (7)
С9	0.22294 (19)	0.01719 (15)	0.5044 (3)	0.0518 (6)
C10	0.1393 (2)	-0.00719 (16)	0.3779 (3)	0.0560 (7)

supplementary materials

H10	0.1405	-0.0555	0.3293	0.067*
C11	0.0544 (2)	0.04096 (18)	0.3248 (3)	0.0588 (7)
C12	0.0482 (2)	0.11277 (17)	0.3938 (4)	0.0627 (7)
H12	-0.0095	0.1446	0.3568	0.075*
C13	0.1312 (2)	0.13480 (15)	0.5197 (4)	0.0587 (7)
C14	0.2185 (2)	0.08975 (15)	0.5764 (4)	0.0545 (6)
H14	0.2736	0.1073	0.6611	0.065*
C15	0.6721 (3)	0.19029 (18)	0.9047 (6)	0.0866 (10)
H15A	0.6505	0.2096	0.7838	0.104*
H15B	0.6251	0.2119	0.9863	0.104*
C16	0.7843 (3)	0.2102 (2)	0.9632 (9)	0.139 (2)
H16A	0.7925	0.2640	0.9594	0.208*
H16B	0.8302	0.1870	0.8841	0.208*
H16C	0.8039	0.1926	1.0847	0.208*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0586 (11)	0.0578 (12)	0.0953 (15)	-0.0026 (9)	-0.0149 (10)	-0.0026 (10)
O2	0.0540 (11)	0.0594 (11)	0.0863 (14)	0.0043 (9)	-0.0075 (10)	0.0016 (10)
O3	0.0770 (14)	0.0613 (13)	0.1109 (18)	-0.0009 (11)	-0.0198 (13)	-0.0172 (12)
O4	0.0805 (15)	0.1026 (19)	0.0738 (15)	-0.0281 (14)	-0.0077 (11)	-0.0029 (13)
05	0.0623 (14)	0.135 (2)	0.0963 (18)	0.0002 (14)	-0.0259 (13)	0.0126 (16)
O6	0.0978 (19)	0.101 (2)	0.158 (3)	0.0457 (16)	-0.0271 (18)	-0.0201 (18)
07	0.0794 (15)	0.0655 (14)	0.122 (2)	-0.0015 (11)	-0.0130 (14)	-0.0100 (13)
N1	0.0480 (12)	0.0551 (12)	0.0622 (14)	0.0009 (9)	-0.0043 (10)	0.0008 (10)
N2	0.0546 (15)	0.105 (2)	0.0549 (14)	-0.0166 (15)	-0.0023 (11)	0.0122 (14)
N3	0.0634 (15)	0.0656 (15)	0.093 (2)	0.0088 (13)	-0.0045 (14)	0.0049 (14)
C1	0.0465 (14)	0.0586 (15)	0.0560 (15)	0.0011 (12)	0.0016 (11)	0.0001 (12)
C2	0.0458 (13)	0.0576 (15)	0.0452 (13)	0.0029 (11)	0.0045 (10)	0.0006 (11)
C3	0.0506 (15)	0.0693 (17)	0.0544 (15)	0.0061 (12)	0.0004 (11)	0.0038 (12)
C4	0.0638 (17)	0.0657 (18)	0.0753 (19)	0.0196 (14)	-0.0021 (15)	0.0069 (15)
C5	0.077 (2)	0.0551 (17)	0.094 (2)	0.0141 (15)	-0.0024 (17)	-0.0024 (16)
C6	0.0644 (17)	0.0556 (16)	0.080 (2)	0.0028 (13)	-0.0027 (14)	-0.0031 (14)
C7	0.0497 (14)	0.0573 (15)	0.0500 (14)	0.0061 (11)	0.0052 (11)	0.0035 (11)
C8	0.0514 (15)	0.0647 (17)	0.0573 (15)	-0.0025 (12)	0.0015 (12)	-0.0026 (13)
C9	0.0438 (13)	0.0612 (16)	0.0501 (14)	-0.0029 (11)	0.0038 (11)	0.0037 (12)
C10	0.0486 (14)	0.0701 (17)	0.0488 (14)	-0.0094 (12)	0.0034 (11)	0.0023 (12)
C11	0.0437 (14)	0.085 (2)	0.0463 (14)	-0.0120 (13)	0.0009 (11)	0.0105 (13)
C12	0.0464 (14)	0.0742 (19)	0.0664 (17)	0.0013 (13)	0.0016 (12)	0.0177 (15)
C13	0.0488 (14)	0.0588 (16)	0.0682 (17)	-0.0017 (12)	0.0053 (12)	0.0104 (13)
C14	0.0458 (13)	0.0598 (15)	0.0565 (15)	-0.0060 (11)	-0.0001 (11)	0.0051 (12)
C15	0.075 (2)	0.0586 (18)	0.121 (3)	-0.0012 (16)	-0.011 (2)	-0.0072 (18)
C16	0.086 (3)	0.075 (3)	0.243 (6)	-0.011 (2)	-0.036 (3)	-0.007 (3)

Geometric parameters (Å, °)

O1—C1	1.319 (3)	C5—C6	1.378 (4)
O1—C15	1.460 (4)	С5—Н5	0.9300

O2—C1	1.217 (3)	C6—C7	1.393 (4)
O3—C8	1.225 (3)	С6—Н6	0.9300
O4—N2	1.221 (4)	C8—C9	1.503 (4)
O5—N2	1.221 (4)	C9—C10	1.390 (4)
O6—N3	1.214 (3)	C9—C14	1.396 (4)
O7—N3	1.212 (3)	C10-C11	1.381 (4)
N1—C8	1.346 (3)	C10—H10	0.9300
N1—C7	1.405 (3)	C11—C12	1.378 (4)
N1—H1	0.8600	C12—C13	1.370 (4)
N2—C11	1.468 (3)	C12—H12	0.9300
N3—C13	1.480 (4)	C13—C14	1.376 (4)
C1—C2	1.488 (4)	C14—H14	0.9300
C2—C3	1.395 (3)	C15—C16	1.458 (5)
C2—C7	1.407 (4)	C15—H15A	0.9700
C3—C4	1.382 (4)	C15—H15B	0.9700
С3—Н3	0.9300	C16—H16A	0.9600
C4—C5	1.366 (4)	C16—H16B	0.9600
C4—H4	0.9300	C16—H16C	0.9600
C1	117.0 (2)	03—C8—C9	119.6 (2)
C8—N1—C7	129.4 (2)	N1-C8-C9	115.6 (2)
C8—N1—H1	115.3	C10-C9-C14	119.1 (2)
C7—N1—H1	115.3	C10-C9-C8	116.7 (2)
05—N2—04	123.3 (3)	C14—C9—C8	124.1 (2)
05 - N2 - C11	117.9 (3)	C11—C10—C9	119.4 (3)
04 - N2 - C11	1187(3)	$C_{11} - C_{10} - H_{10}$	120.3
07 - N3 - 06	124 2 (3)	C9-C10-H10	120.3
07 - N3 - C13	1180(2)	C_{12} C_{11} C_{10}	122.6 (2)
06 - N3 - C13	117.8 (3)	C12 $C11$ $N2$	118 8 (3)
02-01	122.5 (2)	C10-C11-N2	1184(3)
$0^{2}-0^{1}-0^{2}$	125.2(2)	C13-C12-C11	116.6(3)
01 - 01 - 02	1123.2(2) 112.3(2)	C13 - C12 - H12	121.7
C_{3} C_{2} C_{7}	119.1 (2)	C11 - C12 - H12	121.7
C_{3} C_{2} C_{1}	119.4 (2)	C12-C13-C14	121.7 123.5(3)
C_{7} C_{2} C_{1}	121 5 (2)	C12 - C13 - N3	123.3(3) 118.2(2)
$C_4 - C_3 - C_2$	121.0(2) 121.0(3)	C12 - C13 - N3	110.2(2) 118.2(2)
C4 - C3 - H3	119.5	C13-C14-C9	110.2(2) 118.8(2)
C_{2} C_{3} H_{3}	119.5	C13 - C14 - H14	120.6
$C_{2} = C_{3} = C_{3}$	119.2 (3)	C9-C14-H14	120.0
C_{2}^{-} C_{4}^{-} H_{4}^{-}	120 4	$C_{16} = C_{15} = 0_{1}$	120.0
$C_3 = C_4 = H_4$	120.4	C16-C15-H15A	110.2
$C_{1} = C_{1} = C_{1}$	120.4	01H15A	110.2
$C_{4} = C_{5} = C_{0}$	110.2	C16-C15-H15B	110.2
Сб-С5-Н5	119.2	01-C15-H15B	110.2
C_{5} C_{6} C_{7}	119.9 (3)	H15A_C15_H15B	108.5
C5_C6_H6	120.0	C15_C16_H164	100.5
C7_C6_H6	120.0	C15_C16_H16B	109.5
C_{-}^{-}	119 1 (2)	H164H16B	109.5
C6-C7-N1	117.1(2) 1223(2)	C15_C16_H16C	109.5
$C_{2} - C_{7} - N_{1}$	122.3(2)	H16AC16H16C	109.5
02 0/-101	110.0 (2)		107.5

supplementary materials

O3—C8—N1	124.8 (3)	H16B—C16—H16C		109.5
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1…O2	0.86	1.92	2.641 (3)	140.
C16—H16A…O3 ⁱ	0.96	2.55	3.402 (4)	148
Symmetry codes: (i) $-x+1$, $y+1/2$, $-z+3/2$	2.			

